Anchoring of FRET Sensors—A Requirement for Spatiotemporal Resolution

نویسندگان

  • Elena V. Ivanova
  • Ricardo A. Figueroa
  • Tom Gatsinzi
  • Einar Hallberg
  • Kerstin Iverfeldt
چکیده

FRET biosensors have become a routine tool for investigating mechanisms and components of cell signaling. Strategies for improving them for particular applications are continuously sought. One important aspect to consider when designing FRET probes is the dynamic distribution and propagation of signals within living cells. We have addressed this issue by directly comparing an anchored (taFS) to a non-anchored (naFS) cleavable FRET sensor. We chose a microtubule-associated protein tau as an anchor, as microtubules are abundant throughout the cytosol of cells. We show that tau-anchored FRET sensors are concentrated at the cytoskeleton and enriched in the neurite-like processes of cells, providing high intensity of the total signal. In addition, anchoring limits the diffusion of the sensor, enabling spatiotemporally resolved monitoring of subcellular variations in enzyme activity. Thus, anchoring is an important aspect to consider when designing FRET sensors for deeper understanding of cell signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Guide to Fluorescent Protein FRET Pairs

Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compati...

متن کامل

Dual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells

Spatiotemporal changes in cellular calcium (Ca2+) concentrations are essential for signal transduction in a wide range of plant cellular processes. In legumes, nuclear and perinuclear-localized Ca2+ oscillations have emerged as key signatures preceding downstream symbiotic signaling responses. Förster resonance energy transfer (FRET) yellow-based Ca2+ cameleon probes have been successfully expl...

متن کامل

An Improved Ras Sensor for Highly Sensitive and Quantitative FRET-FLIM Imaging

Ras is a signaling protein involved in a variety of cellular processes. Hence, studying Ras signaling with high spatiotemporal resolution is crucial to understanding the roles of Ras in many important cellular functions. Previously, fluorescence lifetime imaging (FLIM) of fluorescent resonance energy transfer (FRET)-based Ras activity sensors, FRas and FRas-F, have been demonstrated to be usefu...

متن کامل

Studying Kinetochores In Vivo Using FLIM-FRET.

Kinetochores play essential roles in coordinating mitosis, as a mechanical connector between chromosome and microtubule and as a source of numerous biochemical signals. These mechanical and biochemical behaviors of kinetochores change dynamically in cells during mitosis. Therefore, understanding kinetochore function requires an imaging tool that quantifies the protein-protein interactions or bi...

متن کامل

Imaging intracellular signaling using two-photon fluorescent lifetime imaging microscopy.

The recent development of Förster resonance energy transfer (FRET) sensors and FRET imaging techniques permits visualization of the dynamics of intracellular signaling events with high spatiotemporal resolution. In particular, fluorescence lifetime imaging in combination with two-photon laser-scanning microscopy (two-photon fluorescence lifetime imaging microscopy [2pFLIM]) is a powerful tool t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016